If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/5-p)-(p^2/5-p)=-2
We move all terms to the left:
(5/5-p)-(p^2/5-p)-(-2)=0
Domain of the equation: 5-p)!=0We add all the numbers together, and all the variables
We move all terms containing p to the left, all other terms to the right
-p)!=-5
p!=-5/1
p!=-5
p∈R
(-1p+1)-(p^2/5-p)-(-2)=0
We add all the numbers together, and all the variables
(-1p+1)-(p^2/5-p)+2=0
We get rid of parentheses
-p^2/5-1p+p+1+2=0
We multiply all the terms by the denominator
-p^2-1p*5+p*5+1*5+2*5=0
We add all the numbers together, and all the variables
-1p^2-1p*5+p*5+15=0
Wy multiply elements
-1p^2-5p+5p+15=0
We add all the numbers together, and all the variables
-1p^2+15=0
a = -1; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-1)·15
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-1}=\frac{0-2\sqrt{15}}{-2} =-\frac{2\sqrt{15}}{-2} =-\frac{\sqrt{15}}{-1} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-1}=\frac{0+2\sqrt{15}}{-2} =\frac{2\sqrt{15}}{-2} =\frac{\sqrt{15}}{-1} $
| -1/6n-1/2=-7/9n+1/3 | | -5/8b-3/16=-1/2b+1/8 | | 1/3y+1=9 | | 2x^2=3+2x | | 1/2a+4=6 | | x^2+15x+98=0 | | 2(m)-1/2=17 | | 6.2h=-3.7 | | 1/6c+4=7 | | (4x/3x-2)+(2x/3x+2)=2 | | 6=•+3m=-12 | | 9x×5x+3x=2x+7/9 | | 8t^2-16t-7=0 | | 2(6x+2)=4(2x+4) | | 0.75/p+3=5.88 | | 8x+2(7x+1)=104+3(x+4) | | (12)/w+9=w+13 | | 0=14+32t+-16t2 | | t=65.1=173.8 | | -3v=-3v-3 | | Y+2/3=y/2+1/9 | | 192x=6 | | 4x-2(x+5)=-5(2x-4)+90 | | 4x-5/3=10 | | 2^3x=100 | | 25x2+20x=-7 | | U2-8u+15=0 | | (X2-3x-10)(x2-5x-6=144) | | -2-3c=7 | | 0.07y+0.5=0.51y+1.2 | | 1/4y-1/8=y/6 | | -8=(4n-2)/8 |